linkedin mcp

Local 2025-09-01 00:58:54 0
Browser Automation @Rayyan9477/linkedin_mcp

A server that enables AI assistants to interact with LinkedIn programmatically for job searching, resume/cover letter generation, and managing job applications through standardized JSON-RPC requests.


License: MIT

A powerful Model Context Protocol server for LinkedIn interactions that enables AI assistants to search for jobs, generate resumes and cover letters, and manage job applications programmatically.

Features

  • Authentication: Secure LinkedIn authentication with session management
  • Profile Management: Access and update LinkedIn profile information
  • Job Search: Search for jobs with flexible filtering options
  • Resume Generation: Create customized resumes from LinkedIn profiles
  • Cover Letter Generation: Generate tailored cover letters for specific job applications
  • Job Applications: Submit and track job applications

Architecture

This project implements the Model Context Protocol (MCP) specification, allowing AI assistants to interact with LinkedIn through standardized JSON-RPC style requests and responses.

Components:

  • MCP Handler: Routes requests to appropriate service handlers
  • API Modules: Specialized modules for LinkedIn interactions (auth, job search, profile, etc.)
  • Core Protocol: Defines request/response structures and data models
  • Utilities: Configuration management and helper functions

Installation

# Clone the repository
git clone https://github.com/yourusername/linkedin-mcp.git
cd linkedin-mcp

# Create and activate a virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venvScriptsactivate

# Install dependencies
pip install -r requirements.txt

Configuration

Create a .env file in the project root with the following variables:

# LinkedIn Credentials
[email protected]
LINKEDIN_PASSWORD=your_password

# API Settings
OPENAI_API_KEY=your_openai_api_key
SESSION_DIR=sessions
DATA_DIR=data

Usage

Starting the Server

python server.py

Example MCP Requests

Authentication

{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "linkedin.login",
  "params": {
    "username": "[email protected]",
    "password": "password123"
  }
}

Searching for Jobs

{
  "jsonrpc": "2.0",
  "id": 2,
  "method": "linkedin.searchJobs",
  "params": {
    "filter": {
      "keywords": "software engineer",
      "location": "New York, NY",
      "distance": 25
    },
    "page": 1,
    "count": 20
  }
}

Generating a Resume

{
  "jsonrpc": "2.0",
  "id": 3,
  "method": "linkedin.generateResume",
  "params": {
    "profileId": "user123",
    "template": "standard",
    "format": "pdf"
  }
}

Available Methods

Method Description
linkedin.login Authenticate with LinkedIn
linkedin.logout End the current session
linkedin.checkSession Check if the current session is valid
linkedin.getFeed Get LinkedIn feed posts
linkedin.getProfile Get LinkedIn profile information
linkedin.getCompany Get company profile information
linkedin.searchJobs Search for jobs with filters
linkedin.getJobDetails Get detailed information about a job
linkedin.getRecommendedJobs Get job recommendations
linkedin.generateResume Generate a resume from a LinkedIn profile
linkedin.generateCoverLetter Generate a cover letter for a job application
linkedin.tailorResume Customize a resume for a specific job
linkedin.applyToJob Apply to a job
linkedin.getApplicationStatus Check application status
linkedin.getSavedJobs Get saved jobs
linkedin.saveJob Save a job for later

Development

Project Structure

linkedin-mcp/
├── README.md
├── requirements.txt
├── server.py
├── data/
│   ├── applications/
│   ├── companies/
│   ├── cover_letters/
│   ├── jobs/
│   ├── profiles/
│   └── resumes/
├── linkedin_mcp/
│   ├── api/
│   │   ├── auth.py
│   │   ├── cover_letter_generator.py
│   │   ├── job_application.py
│   │   ├── job_search.py
│   │   ├── profile.py
│   │   └── resume_generator.py
│   ├── core/
│   │   ├── mcp_handler.py
│   │   └── protocol.py
│   └── utils/
│       └── config.py
├── sessions/
└── templates/
    ├── cover_letter/
    │   └── standard.html
    └── resume/
        └── standard.html

Running Tests

pytest

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • LinkedIn API documentation
  • Model Context Protocol specification