zig mcp server
Provides Zig language tooling and code analysis, enhancing AI capabilities with Zig-specific functions like code optimization, compute unit estimation, code generation, and recommendations for best practices.
Provides Zig language tooling and code analysis, enhancing AI capabilities with Zig-specific functions like code optimization, compute unit estimation, code generation, and recommendations for best practices.
A Model Context Protocol (MCP) server that provides Zig language tooling, code analysis, and documentation access. This server enhances AI capabilities with Zig-specific functionality including code optimization, compute unit estimation, code generation, and best practices recommendations.
optimize_code
)Analyzes and optimizes Zig code with support for different optimization levels: - Debug - ReleaseSafe - ReleaseFast - ReleaseSmall
// Example usage
{
"code": "const std = @import("std");
...",
"optimizationLevel": "ReleaseFast"
}
estimate_compute_units
)Estimates computational complexity and resource usage of Zig code: - Memory usage analysis - Time complexity estimation - Allocation patterns detection
// Example usage
{
"code": "const std = @import("std");
..."
}
generate_code
)Generates Zig code from natural language descriptions with support for: - Error handling - Testing - Performance optimizations - Documentation
// Example usage
{
"prompt": "Create a function that sorts an array of integers",
"context": "Should handle empty arrays and use comptime when possible"
}
get_recommendations
)Provides code improvement recommendations and best practices: - Style and conventions - Design patterns - Safety considerations - Performance insights
// Example usage
{
"code": "const std = @import("std");
...",
"prompt": "Improve performance and safety"
}
zig://docs/language-reference
)Best practices
Standard Library Documentation (zig://docs/std-lib
)
Examples and notes
Popular Repositories (zig://repos/popular
)
Clone the repository:
git clone [repository-url]
cd zig-mcp-server
Install dependencies:
npm install
Build the server:
npm run build
Configure environment variables:
# Create a GitHub token for better API rate limits
# https://github.com/settings/tokens
# Required scope: public_repo
GITHUB_TOKEN=your_token_here
Add to MCP settings:
{
"mcpServers": {
"zig": {
"command": "node",
"args": ["/path/to/zig-mcp-server/build/index.js"],
"env": {
"GITHUB_TOKEN": "your_token_here",
"NODE_OPTIONS": "--experimental-vm-modules"
},
"restart": true
}
}
}
const result = await useMcpTool("zig", "optimize_code", {
code: `
pub fn fibonacci(n: u64) u64 {
if (n <= 1) return n;
return fibonacci(n - 1) + fibonacci(n - 2);
}
`,
optimizationLevel: "ReleaseFast"
});
const result = await useMcpTool("zig", "estimate_compute_units", {
code: `
pub fn bubbleSort(arr: []i32) void {
var i: usize = 0;
while (i < arr.len) : (i += 1) {
var j: usize = 0;
while (j < arr.len - 1) : (j += 1) {
if (arr[j] > arr[j + 1]) {
const temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
`
});
const result = await useMcpTool("zig", "generate_code", {
prompt: "Create a thread-safe counter struct",
context: "Should use atomic operations and handle overflow"
});
const result = await useMcpTool("zig", "get_recommendations", {
code: `
pub fn main() !void {
var list = std.ArrayList(u8).init(allocator);
var i: u32 = 0;
while (true) {
if (i >= 100) break;
try list.append(@intCast(u8, i));
i += 1;
}
}
`,
prompt: "performance"
});
zig-mcp-server/
├── src/
│ └── index.ts # Main server implementation
├── build/ # Compiled JavaScript
├── package.json # Dependencies and scripts
└── tsconfig.json # TypeScript configuration
# Development build with watch mode
npm run watch
# Production build
npm run build
npm test
git checkout -b feature/amazing-feature
)git commit -m 'Add some amazing feature'
)git push origin feature/amazing-feature
)MIT License - see the LICENSE file for details.
[
{
"description": "Optimize Zig code for better performance",
"inputSchema": {
"properties": {
"code": {
"description": "Zig code to optimize",
"type": "string"
},
"optimizationLevel": {
"description": "Optimization level to target",
"enum": [
"Debug",
"ReleaseSafe",
"ReleaseFast",
"ReleaseSmall"
],
"type": "string"
}
},
"required": [
"code"
],
"type": "object"
},
"name": "optimize_code"
},
{
"description": "Estimate computational complexity and resource usage",
"inputSchema": {
"properties": {
"code": {
"description": "Zig code to analyze",
"type": "string"
}
},
"required": [
"code"
],
"type": "object"
},
"name": "estimate_compute_units"
},
{
"description": "Generate Zig code from natural language description",
"inputSchema": {
"properties": {
"context": {
"description": "Additional context or requirements",
"type": "string"
},
"prompt": {
"description": "Natural language description of desired code",
"type": "string"
}
},
"required": [
"prompt"
],
"type": "object"
},
"name": "generate_code"
},
{
"description": "Get code improvement recommendations and best practices",
"inputSchema": {
"properties": {
"code": {
"description": "Zig code to analyze",
"type": "string"
},
"prompt": {
"description": "Natural language query for specific recommendations",
"type": "string"
}
},
"required": [
"code"
],
"type": "object"
},
"name": "get_recommendations"
}
]