mcp server openai
Enables integration with OpenAI models through the MCP protocol, supporting concise and detailed responses for use with Claude Desktop.
Enables integration with OpenAI models through the MCP protocol, supporting concise and detailed responses for use with Claude Desktop.
Query OpenAI models directly from Claude using MCP protocol. This fork adds support for o3-mini and gpt-4o-mini models with improved message handling.
Set up the MCP server from https://github.com/thadius83/mcp-server-openai.
Use "github.com/thadius83/mcp-server-openai" as the server name in cline_mcp_settings.json.
Analyse the readme and instructions below. Do not create new files in the repo, utilise the findings from pyproject.toml, src/mcp_server_openai/server.py, src/mcp_server_openai/llm.py
Once installed, demonstrate the server's capabilities by using one of its tools.
Installation Steps:
# Clone the repository
git clone https://github.com/thadius83/mcp-server-openai
cd mcp-server-openai
# Install the package
pip install .`
MCP Settings Configuration: The cline_mcp_settings.json should be configured with:
Correct server name format: "github.com/thadius83/mcp-server-openai"
Python module path structure for the server
PYTHONPATH environment variable pointing to the project directory
OpenAI API key passed as a command line argument
Example configuration:
{
"mcpServers": {
"github.com/thadius83/mcp-server-openai": {
"command": "python",
"args": [
"-m",
"src.mcp_server_openai.server",
"--openai-api-key",
"your-openai-api-key"
],
"env": {
"PYTHONPATH": "/path/to/mcp-server-openai"
},
"disabled": false,
"autoApprove": []
}
}
}
Requirements:
Python >= 3.10
OpenAI API key
Dependencies installed via pip (mcp>=0.9.1, openai>=1.0.0, click>=8.0.0, pytest-asyncio)
Available Tools:
Tool Name: ask-openai
Description: Ask OpenAI assistant models a direct question
Models Available:
o3-mini (default)
gpt-4o-mini
Input Schema:
{
"query": "Your question here",
"model": "o3-mini" // optional, defaults to o3-mini
}
To install OpenAI MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @thadius83/mcp-server-openai --client claude
Clone the Repository:
git clone https://github.com/thadius83/mcp-server-openai.git
cd mcp-server-openai
# Install dependencies
pip install -e .
Configure Claude Desktop:
Add this server to your existing MCP settings configuration. Note: Keep any existing MCP servers in the configuration - just add this one alongside them.
Location:
- macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
- Windows: %APPDATA%/Claude/claude_desktop_config.json
- Linux: Check your home directory (~/
) for the default MCP settings location
{
"mcpServers": {
// ... keep your existing MCP servers here ...
"github.com/thadius83/mcp-server-openai": {
"command": "python",
"args": ["-m", "src.mcp_server_openai.server", "--openai-api-key", "your-key-here"],
"env": {
"PYTHONPATH": "/path/to/your/mcp-server-openai"
}
}
}
}
Add the key to your configuration file as shown above
Restart Claude:
The server provides a single tool ask-openai
that can be used to query OpenAI models. You can use it directly in Claude with the use_mcp_tool command:
<use_mcp_tool>
<server_name>github.com/thadius83/mcp-server-openai</server_name>
<tool_name>ask-openai</tool_name>
<arguments>
{
"query": "What are the key features of Python's asyncio library?",
"model": "o3-mini" // Optional, defaults to o3-mini
}
</arguments>
</use_mcp_tool>
Example response:
Python's asyncio provides non-blocking, collaborative multitasking. Key features:
1. Event Loop – Schedules and runs asynchronous tasks
2. Coroutines – Functions you can pause and resume
3. Tasks – Run coroutines concurrently
4. Futures – Represent future results
5. Non-blocking I/O – Efficient handling of I/O operations
gpt-4o-mini
Python's asyncio library provides a comprehensive framework for asynchronous programming.
It includes an event loop for managing tasks, coroutines for writing non-blocking code,
tasks for concurrent execution, futures for handling future results, and efficient I/O
operations. The library also provides synchronization primitives and high-level APIs
for network programming.
The tool returns responses in a standardized format:
{
"content": [
{
"type": "text",
"text": "Response from the model..."
}
]
}
Try running python -m src.mcp_server_openai.server --openai-api-key your-key-here
directly to check for errors
Authentication Errors:
Verify there are no extra spaces or characters in the key
Model Errors:
# Install development dependencies
pip install -e ".[dev]"
# Run tests
pytest -v test_openai.py -s
MIT License
[
{
"description": "Ask my assistant models a direct question",
"inputSchema": {
"properties": {
"model": {
"default": "o3-mini",
"enum": [
"o3-mini",
"gpt-4o-mini"
],
"type": "string"
},
"query": {
"description": "Ask assistant",
"type": "string"
}
},
"required": [
"query"
],
"type": "object"
},
"name": "ask-openai"
}
]