ai image gen mcp
Enables users to generate images from text prompts using Replicate's model, with configurable parameters and full MCP protocol compliance.
Enables users to generate images from text prompts using Replicate's model, with configurable parameters and full MCP protocol compliance.
An MCP (Model Context Protocol) server implementation for generating images using Replicate's black-forest-labs/flux-schnell
model.
Ideally to be used with Cursor's MCP feature, but can be used with any MCP client.
npm install
src/imageService.ts
by updating the apiToken
constant:
// No environment variables are used since they can't be easily set in cursor
const apiToken = "your-replicate-api-token-here";
Note: If using with Claude, you can create a
.env
file in the root directory and set your API token there:REPLICATE_API_TOKEN=your-replicate-api-token-here
Then build the project:
npm run build
To use with cursor:
1. Go to Settings
2. Select Features
3. Scroll down to "MCP Servers"
4. Click "Add new MCP Server"
5. Set Type to "Command"
6. Set Command to: node ./path/to/dist/server.js
Parameter | Type | Required | Default | Description |
---|---|---|---|---|
prompt |
string | Yes | - | Text prompt for image generation |
output_dir |
string | Yes | - | Server directory path to save generated images |
go_fast |
boolean | No | false | Enable faster generation mode |
megapixels |
string | No | "1" | Resolution quality ("1", "2", "4") |
num_outputs |
number | No | 1 | Number of images to generate (1-4) |
aspect_ratio |
string | No | "1:1" | Aspect ratio ("1:1", "4:3", "16:9") |
output_format |
string | No | "webp" | Image format ("webp", "png", "jpeg") |
output_quality |
number | No | 80 | Compression quality (1-100) |
num_inference_steps |
number | No | 4 | Number of denoising steps (4-20) |
{
"prompt": "black forest gateau cake spelling out 'FLUX SCHNELL'",
"output_dir": "/var/output/images",
"filename": "black_forest_cake",
"output_format": "webp"
"go_fast": true,
"megapixels": "1",
"num_outputs": 2,
"aspect_ratio": "1:1"
}
{
"image_paths": [
"/var/output/images/output_0.webp",
"/var/output/images/output_1.webp"
],
"metadata": {
"model": "black-forest-labs/flux-schnell",
"inference_time_ms": 2847
}
}
The server handles the following error types:
Each error response includes: - Error code - Human-readable message - Detailed error information
ISC