ragdocs
Provides RAG capabilities for semantic document search using Qdrant vector database and Ollama/OpenAI embeddings, allowing users to add, search, list, and delete documentation with metadata support.
Provides RAG capabilities for semantic document search using Qdrant vector database and Ollama/OpenAI embeddings, allowing users to add, search, list, and delete documentation with metadata support.
A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Qdrant vector database and Ollama/OpenAI embeddings. This server enables semantic search and management of documentation through vector similarity.
Add a document to the RAG system.
Parameters:
- url
(required): Document URL/identifier
- content
(required): Document content
- metadata
(optional): Document metadata
- title
: Document title
- contentType
: Content type (e.g., "text/markdown")
Search through stored documents using semantic similarity.
Parameters:
- query
(required): Natural language search query
- options
(optional):
- limit
: Maximum number of results (1-20, default: 5)
- scoreThreshold
: Minimum similarity score (0-1, default: 0.7)
- filters
:
- domain
: Filter by domain
- hasCode
: Filter for documents containing code
- after
: Filter for documents after date (ISO format)
- before
: Filter for documents before date (ISO format)
List all stored documents with pagination and grouping options.
Parameters (all optional):
- page
: Page number (default: 1)
- pageSize
: Number of documents per page (1-100, default: 20)
- groupByDomain
: Group documents by domain (default: false)
- sortBy
: Sort field ("timestamp", "title", or "domain")
- sortOrder
: Sort order ("asc" or "desc")
Delete a document from the RAG system.
Parameters:
- url
(required): URL of the document to delete
npm install -g @mcpservers/ragdocs
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using Qdrant Cloud:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "https://your-cluster-url.qdrant.tech",
"QDRANT_API_KEY": "your-qdrant-api-key",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using OpenAI:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "openai",
"OPENAI_API_KEY": "your-api-key"
}
}
}
}
docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant
QDRANT_URL
: URL of your Qdrant instanceQDRANT_API_KEY
: API key for Qdrant Cloud (required when using cloud instance)EMBEDDING_PROVIDER
: Choice of embedding provider ("ollama" or "openai", default: "ollama")OPENAI_API_KEY
: OpenAI API key (required if using OpenAI)EMBEDDING_MODEL
: Model to use for embeddingsApache License 2.0